Welcome to Microwave-Link.com

Welcome to Microwave-Link.com

Find out information on technology, deployment and applications for modern Digital Microwave Links

Microwave Link
CableFree MW Link installed on a telecom tower

Microwave links are widely used for connectivity in modern digital IP networks. With capacities up to 3Gbps and beyond, a modern Microwave Link network can deliver bandwidth in a reliable, cost-effective and flexible manner – without need for disruption and delay caused by digging up streets and avoiding costly leased-line or leased fibre optic alternatives.

On this website you can find more information about radio link deployment and technology.  Also we invite you to contact our experts with any questions by sending a message to us on our contact page.

CableFree Microwave Links used for Mobile Backhaul
CableFree MW Radio Links used for Mobile Backhaul

Microwave links are used extensively in 4G/LTE backhaul networks, 2G (GSM) and 3G (UMTS) mobile operators, wireless metropolitan area networks (Wi-MAN) and corporate networks where high performance, flexibility, speed of deployment and low operating costs are required.  Key features of links include high spectral efficiency (256QAM, 1024QAM, 2048QAM and 4096QAM), Automatic Transmit Power Control (ATPC) and Adaptive Coding and Modulation (ACM).

Globally, MW radio links are used for around 60% of all mobile backhaul connections due to the compelling technical and commercial arguments in favour of MW radio compared to leased line and trenched fibre alternatives.  Speed of deployment and flexibility – the ability to move sites or provision rapidly – are greatly in favour of MW radio over fibre and cabled alternatives.

A Full Outdoor Microwave Link installed for ISP in Iraq with 880Mbps Full Duplex Capacity
A Full Outdoor Microwave Link installed for ISP in Iraq with 880Mbps Full Duplex Capacity

A  link typically features a radio unit and a parabolic antenna, which may vary in size from 30cm up to 4m diameter depending on required distance and capacity.  The radio unit is generally either a “Full Outdoor”, “Split Mount” or “Full Indoor” design depending on operator preference, deployment, features and available indoor space for specific sites and installation.

CableFree FOR3 Full Outdoor 1024QAM Microwave Link
Full Outdoor 1024QAM MW Radio Link

For More information on MW Radio Links please Contact Us

 

Current Trends in Microwave Backhaul

Microwave Backhaul: Current and Future Trends

What’s happening in Microwave Backhaul? According to the Ericsson Mobility Report Q4 2017, 3.3 billion mobile broadband subscribers will be added  in the next five years, and a clear majority of these will come from LTE and 3G/HSPA in microwave-centric markets. The addition of an Indian greenfield LTE/4G operator and the densification needed to support proper MBB services will increase the number of sites, stabilizing microwave share on a global basis.
The large-scale 5G volume deployments are initially expected in areas with high fiber penetration, such as China, Korea, Japan and US.
There are also operators in Western Europe that have a combination of microwave and fiber, and are looking at introducing 5G. Larger volume rollouts of 5G networks are planned for a later point in the next few years.

CableFree-Microwave-Fiber-Copper-Backhaul-Global-to-2022

Backhaul media distribution (excluding China, Japan, Korea and Taiwan)

 

CableFree-Microwave-Fiber-Copper-Backhaul-Regions

In mature mobile broadband regions such as Western Europe, there are
examples of large operators using up to 80 percent microwave that now
plan for 5G introduction using existing microwave networks. Microwave
technology has evolved to manage the demand of mobile networks,
and can do so from any macro site. Core and inter-city aggregation
networks are typically deployed with fiber backhaul, while spurs are
implemented using microwave. It has also been observed that usage of
lower spectrum for longer-distance hops is decreasing in favor of
higher-frequency bands for short distance and high-capacity hops.

Number of Microwave Hops in Europe according to CEPT
Number of Microwave Hops in Europe according to CEPT

Spectrum trends up to 2025

Spectrum below 3GHz will provide coverage in 5G. The 3–5GHz spectrum will enable high bandwidth balanced with good coverage. These bands are not used by microwave today to any major extent (apart from some 4 and 5GHz long-haul links). The extreme bandwidths in 5G will be enabled for hotspots and industry applications in spectrum above 20GHz.
It is clear that the main focus will be on bands 24–42GHz. In the US the FCC currently has a 24, 28 and 38GHz focus and in Europe there is a focus on 26GHz. 3GPP is specifying 5G bands in 24.25–29.5GHz and 37–43.5GHz in Release 15. It excludes 32GHz and E-band, which are both part of the ITU study and, in a recent report, the FCC stresses the importance of E-band for 5G backhaul. The decision on which bands to use and where, will be unique to each nation. But longterm parts of the 24–42GHz spectrum will be used more by 5G and less by microwave fixed services. In some of these bands, e.g. 26 and 38GHz
in Europe, there are many existing microwave links in several countries.
It will take time to move these links to other bands such as E-band. The 15–23GHz spectrum will remain as the global high-volume microwave bands. E-band will become a global high-volume band, both on its own and in a multi-band booster combination with 15–23GHz.
For long hops and as an economical replacement to fiber, 6–13GHz will also remain important. Due to their good propagation properties in geographical areas with high rain rates, these low frequencies are fundamental to building transport networks in certain regions.
With all of this taken into account, it is clear that the availability and usage of microwave spectrum will go through a major transformation in the next 5 to 10 years

CableFree Microwave New deployment share per frequency range
New deployment share per frequency range

Higher Capacities: Radio Link Aggregation

When combining data over multiple carriers, radio link bonding is a key technology. An efficient bonding technique ensures that a single data stream is seamlessly transmitted across different radio channels, with negligible overhead.  In the current Global market: About 80 percent of links are configured as single carriers (1+0), the remainder as multi-carrier links with backup links as protection. About 8 percent are set up with one active radio and the protection link in hot standby mode (1+1); 10 percent are configured with dual-carrier radio link bonding (2+0), where the capacity of the backup link is used to increase the link’s peak capacity. Only 2 percent are configured for three or more carriers (>2+0). Due to the need for increased transport capacity, the number of links aggregated over two or more carriers is rising globally.

CableFree Microwave Global distribution of radio link configurations. 80 percent are configured as single-carrier links (1+0), 20 percent are configured as multiple radio links
Global distribution of radio link configurations. 80 percent are configured as single-carrier links (1+0), 20 percent are configured as multiple radio links

Total Cost of Ownership (TCO) and Return-on-Investment (ROI)

The total cost of ownership and time-to-market becomes critical to
secure the overall operator business case. As fiber investments typically
have a depreciation of around 25 years, and 5–8 years for microwave,
it becomes important to invest in fiber within the right areas, such
as core and aggregation networks, which historically have been
deployed with long-haul microwave.

Technology Evolution for Microwave

Over the past 20 years, microwave technology has been continuously
evolving to meet requirements. In 1996, microwave hops typically
supported 34Mbps, whereas today products have the ability to support
up to 1Gbps in traditional bands, and up to 10Gbps with E-Band.

Microwave Technology Roadmap and Evolution
Microwave Technology Roadmap and Evolution

Acknowledgement

Some content is (C) Ericsson reproduced with thanks, from Ericsson Mobility Report Q4 2017

For Further Information

For More Information on Microwave Links, Please Contact Us

 

Class 4 Microwave Antennas

What is a Class 4 Microwave Antenna?

Class 4 Antennas explained:

CableFree Class 4 Microwave Antenna 1Class 4 antennas provide the current best RF performance allowing mobile operators and Wireless Internet Service Providers (WISP) to increase the link capacity of a network by deploying new microwave links where high levels of interference are present. Class 4 antennas will allow customers to offer the highest performance in even the most congested environments. The higher side lobe suppression supports networks in ultra-dense areas and enables earlier reuse of frequencies. The lower interference increases the carrier-to-interference-ratio and allows smaller antennas with better link throughput, reducing tower leasing fees. The lower interference also enables higher modulation schemes, increasing the data capacity per antenna.

Benefits of a Class 4 Antenna

Increase the link capacity of the network
– Improved radiation patterns for ETSI Class 4 providing better performance
– Less interference and higher carrier-to-interference ratio
– Allows radios to operate at higher modulation levels
• Minimize the total cost of ownership
– Improved network efficiency
– Facilitates better re-use of a frequency channel
– Small antennas with better link throughput reduces tower leasing fees

Intended Use for Class 4 Antennas

CableFree Class 4 Microwave Antenna 1Class 4 antennas are intended for “extremely high interference potential” situations, according to ETSI. For a more detailed treatment of antenna classifications and radiation patterns, see the ETSI document “Fixed Radio Systems; Point to Point Antennas.”

Wider channels, larger capacity

For situations where the operator needs to increase capacity from a wireless backhaul site, the easiest way remains widening the channel size. But at sites that experience extremely high interference, the operator may not be able to coordinate radio frequency pairs in wide channels with Class 3 antennas. However, moving up to Class 4 antennas would allow the operator to optimize the signal-to-noise ratio and let higher modulations come into play, so wide channels could be coordinated with correspondingly higher data rates

Smaller is Better

In cases of high interference, larger antennas can be used to reduce it. For a subset, smaller Class 4 antennas can be used instead of their oversize Class 3 counterparts. Thus, operators who deploy Class 4 antennas gain the added benefit of dropping down a parabolic dish antenna size as compared to a Class 3 antenna in the same application. In general, smaller dishes advantage the operator due to their lighter weight and lower opex tower charges, albeit with an initially bigger upfront capex. Because Class 4 antennas represent an elevated level of precision tooling and more detailed manufacturing versus lower class antennas, capex of these passive, higher-performance infrastructure pieces always weighs in the balance.

 

According to Andy Sutton,  Principal Network Architect at EE:

Using Comsearch’s iQ.linkXG microwave planning software, CommScope analyzed the technical and commercial benefits of using Class 4 Sentinel antennas in the network. The results were most impressive. For the two frequency bands of the microwave backhaul network studied, which is comprised of over 6,200 links in total, the core findings were:

  • Potential savings of $5 million in total cost of ownership (TCO) over five years by enabling a greater link density and therefore reducing the need for third party Ethernet Leased Lines
  • Greater utilization of owned block allocated spectrum reduced the need for link by link licensing (from the national regulator) and therefore could save $44,000 in license fees over five years
  • $4.5 million could be saved per year based on optimizing capacity by freeing congested channels while still ensuring new links met the strict quality of service criteria
  • 96 percent and 31 percent of links which couldn’t be planned due to frequency congestion in 40 and 10 GHz could be assigned a channel, respectively
    • A strong opportunity to trade some of the above by reducing antenna size and thus reducing TCO on tower lease costs

(content from EE above reproduced with acknowledgement from Commscope. Other content from RFS).

For Further Information

For More Information on Microwave Links, Please Contact Us

Mean Square Error (MSE) for Microwave Links

What is Mean Square Error ?

Mean Square Error (MSE) is similar to Signal-to-Noise Ratio (SNR) except that it accounts for distortion and interference in addition to noise power.

Mean Square Error MSE Microwave Link
CableFree Microwave ODU

Distortion may come from several sources such as bad Ethernet cables (poor shield, damaged, or low quality), path degradations such as multipath, or Fresnel zone encroachment.

Interference can come from other transmitters on the tower, as well as from sources inside an indoor shelter. High power transmitters inside a shelter can cause interference when near the PoE device or when located very close to the cabling.

There are maximum acceptable MSE values for each modulation which are useful in determining the quality of the link. The MSE value reported is only relevant to one tx-rx path, so the MSE of each tx-rx path must be evaluated to verify the link is operating as expected. The lower the number the better, so a -35dB is better than a -30dB.

Other possible causes for unacceptable MSE

These include

  • XPIC parameters are incorrect
  • Insufficient isolation between polarisations on an XPIC link
  • Insufficient performance to support high QAM modulation
  • Inbalance between paths on an XPIC dual polarity link

For Further Information

For More Information on Microwave Links, Please Contact Us

Microwave Rain Fade Planning ITU-R P.837-6

RECOMMENDATION ITU-R P.837-6

ITU-R P.837-6 P.0837-01  – Characteristics of precipitation for propagation modelling Radiowave propagation for Terrestrial Microwave Links and Radio Links for Point to Point (P2P, PTP) and Point to Multipoint (P2MP, PTMP) deployments.

Calculations can be made for Link Availability (%) for all frequency bands, to take into account link budgets, transmit power, receive sensitivity, antenna gain, target availability and other factors.  Typical Link Availability Targets are 99.99%, 99.999% and higher.

ITU-R P.837-6 P.0837-01

ITU-R P.837-6 P.0837-01
ITU-R P.837-6 P.0837-01

Recommendation ITU-R P.837 contains maps of meteorological parameters that have been obtained using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-40 re-analysis database, which are recommended for the prediction of rainfall rate statistics with a 1-min integration time, when local measurements are missing.
Rainfall rate statistics with a 1-min integration time are required for the prediction of rain attenuation in terrestrial and satellite links. Data of long-term measurements of rainfall rate may be available from local sources, but only with higher integration times. This Recommendation provides a method for the conversion of rainfall rate statistics with a higher integration time to rainfall rate statistics with a 1-min integration time.

For Further Information

For More Information on Microwave Planning, Please Contact Us

OFCOM Channel Plans for E-band 70GHz-80GHz

OFCOM Channel Plans for E-band 70GHz-80GHz

Here is a chart showing channel plans for the UK

OFCOM - E-Band
OFCOM – E-Band

Uses & Applications

70GHz to 80GHz bands (E-band) are used for Point to Point (P2P) Microwave (Millimeter Wave, MMW) Radio Links

Sources of Data and Graphics

All contents (C) OFCOM and taken from:

OfW48 UK Frequency Allocations for Fixed (Point-to-Point) Wireless Services and Scanning Telemetry This document shows the current bands managed by Ofcom that are available for fixed terrestrial (point to point) links and scanning telemetry in the UK.

Technical regulations

The Radio Equipment and Telecommunications Terminal Equipment Directive
99/5/EC (R&TTED) has been implemented in ‘The Radio Equipment and Telecommunications Terminal Equipment Regulations 2000, Statutory
Instrument (SI) 730. In accordance with Articles 4.1 and 7.2 of the R&TTED
the:
• IR2000: The UK Interface Requirement 2000 contains the requirements for the licensing and use of fixed (point-to-point) wireless services in the UK.
• IR2037: The UK Interface Requirement 2037 applies for scanning telemetry services.
• IR2078: The UK Interface Requirement 2078 applies for the 60 GHz band

Notes specific to the frequency charts

The first column describes each available frequency band, represented by a diagram (not to scale). The frequency band limits are listed below the diagram; frequencies below 10 GHz are represented in MHz, while those above 10 GHz are in GHz. The width of each guard band is shown above the diagram, and is always specified in MHz.
The channel arrangements in some bands are staggered, so that the width and position of the guard band vary for different channel spacings. In these cases, a table underneath gives details of the guard bands for different spacings (with all frequencies in MHz).
The first column also includes the title of the relevant international recommendations for each band, produced by the European Conference of Postal and Telecommunications (CEPT) or the International Telecommunication Union (ITU). CEPT recommendations are available at http://www.cept.org/ecc/ and ITU Recommendations at http://www.itu.int.
The final column contains the channel spacing for duplex operation in each frequency band except for bands above 60 GHz. Details of standard systems assigned in the UK are shown in the relevant technical frequency assignment criteria.

For Further Information

For More Information on Microwave Planning, Please Contact Us

OFCOM Channel Plans for 60GHz and 65GHz

OFCOM Channel Plans for 60GHz and 65GHz

Here is a chart showing channel plans for the UK

OFCOM - V-Band 60GHz 65GHz
OFCOM – V-Band 60GHz 65GHz

Uses & Applications

58GHz, 60GHz and 65GHz bands are used for Point to Point (P2P) Microwave Radio Links.  Also called V-band

Sources of Data and Graphics

All contents (C) OFCOM and taken from:

OfW48 UK Frequency Allocations for Fixed (Point-to-Point) Wireless Services and Scanning Telemetry This document shows the current bands managed by Ofcom that are available for fixed terrestrial (point to point) links and scanning telemetry in the UK.

Technical regulations

The Radio Equipment and Telecommunications Terminal Equipment Directive
99/5/EC (R&TTED) has been implemented in ‘The Radio Equipment and Telecommunications Terminal Equipment Regulations 2000, Statutory
Instrument (SI) 730. In accordance with Articles 4.1 and 7.2 of the R&TTED
the:
• IR2000: The UK Interface Requirement 2000 contains the requirements for the licensing and use of fixed (point-to-point) wireless services in the UK.
• IR2037: The UK Interface Requirement 2037 applies for scanning telemetry services.
• IR2078: The UK Interface Requirement 2078 applies for the 60 GHz band

Notes specific to the frequency charts

The first column describes each available frequency band, represented by a diagram (not to scale). The frequency band limits are listed below the diagram; frequencies below 10 GHz are represented in MHz, while those above 10 GHz are in GHz. The width of each guard band is shown above the diagram, and is always specified in MHz.
The channel arrangements in some bands are staggered, so that the width and position of the guard band vary for different channel spacings. In these cases, a table underneath gives details of the guard bands for different spacings (with all frequencies in MHz).
The first column also includes the title of the relevant international recommendations for each band, produced by the European Conference of Postal and Telecommunications (CEPT) or the International Telecommunication Union (ITU). CEPT recommendations are available at http://www.cept.org/ecc/ and ITU Recommendations at http://www.itu.int.
The final column contains the channel spacing for duplex operation in each frequency band except for bands above 60 GHz. Details of standard systems assigned in the UK are shown in the relevant technical frequency assignment criteria.

For Further Information

For More Information on Microwave Planning, Please Contact Us

OFCOM Channel Plans for 52GHz and 55GHz

OFCOM Channel Plans for 52GHz and 55GHz

Here is a chart showing channel plans for the UK

OFCOM - 52GHz 55GHz
OFCOM – 52GHz 55GHz

Uses & Applications

52GHz and 55GHz bands are used for Point to Point (P2P) Microwave Radio Links

Sources of Data and Graphics

All contents (C) OFCOM and taken from:

OfW48 UK Frequency Allocations for Fixed (Point-to-Point) Wireless Services and Scanning Telemetry This document shows the current bands managed by Ofcom that are available for fixed terrestrial (point to point) links and scanning telemetry in the UK.

Technical regulations

The Radio Equipment and Telecommunications Terminal Equipment Directive
99/5/EC (R&TTED) has been implemented in ‘The Radio Equipment and Telecommunications Terminal Equipment Regulations 2000, Statutory
Instrument (SI) 730. In accordance with Articles 4.1 and 7.2 of the R&TTED
the:
• IR2000: The UK Interface Requirement 2000 contains the requirements for the licensing and use of fixed (point-to-point) wireless services in the UK.
• IR2037: The UK Interface Requirement 2037 applies for scanning telemetry services.
• IR2078: The UK Interface Requirement 2078 applies for the 60 GHz band

Notes specific to the frequency charts

The first column describes each available frequency band, represented by a diagram (not to scale). The frequency band limits are listed below the diagram; frequencies below 10 GHz are represented in MHz, while those above 10 GHz are in GHz. The width of each guard band is shown above the diagram, and is always specified in MHz.
The channel arrangements in some bands are staggered, so that the width and position of the guard band vary for different channel spacings. In these cases, a table underneath gives details of the guard bands for different spacings (with all frequencies in MHz).
The first column also includes the title of the relevant international recommendations for each band, produced by the European Conference of Postal and Telecommunications (CEPT) or the International Telecommunication Union (ITU). CEPT recommendations are available at http://www.cept.org/ecc/ and ITU Recommendations at http://www.itu.int.
The final column contains the channel spacing for duplex operation in each frequency band except for bands above 60 GHz. Details of standard systems assigned in the UK are shown in the relevant technical frequency assignment criteria.

For Further Information

For More Information on Microwave Planning, Please Contact Us

OFCOM Channel Plans for 31GHz and 38GHz

OFCOM Channel Plans for 31GHz and 38GHz

Here is a chart showing channel plans for the UK

OFCOM - 31GHz 38GHz
OFCOM – 31GHz 38GHz

Uses & Applications

31GHz and 38GHz bands are used for Point to Point (P2P) Microwave Radio Links

Sources of Data and Graphics

All contents (C) OFCOM and taken from:

OfW48 UK Frequency Allocations for Fixed (Point-to-Point) Wireless Services and Scanning Telemetry This document shows the current bands managed by Ofcom that are available for fixed terrestrial (point to point) links and scanning telemetry in the UK.

Technical regulations

The Radio Equipment and Telecommunications Terminal Equipment Directive
99/5/EC (R&TTED) has been implemented in ‘The Radio Equipment and Telecommunications Terminal Equipment Regulations 2000, Statutory
Instrument (SI) 730. In accordance with Articles 4.1 and 7.2 of the R&TTED
the:
• IR2000: The UK Interface Requirement 2000 contains the requirements for the licensing and use of fixed (point-to-point) wireless services in the UK.
• IR2037: The UK Interface Requirement 2037 applies for scanning telemetry services.
• IR2078: The UK Interface Requirement 2078 applies for the 60 GHz band

Notes specific to the frequency charts

The first column describes each available frequency band, represented by a diagram (not to scale). The frequency band limits are listed below the diagram; frequencies below 10 GHz are represented in MHz, while those above 10 GHz are in GHz. The width of each guard band is shown above the diagram, and is always specified in MHz.
The channel arrangements in some bands are staggered, so that the width and position of the guard band vary for different channel spacings. In these cases, a table underneath gives details of the guard bands for different spacings (with all frequencies in MHz).
The first column also includes the title of the relevant international recommendations for each band, produced by the European Conference of Postal and Telecommunications (CEPT) or the International Telecommunication Union (ITU). CEPT recommendations are available at http://www.cept.org/ecc/ and ITU Recommendations at http://www.itu.int.
The final column contains the channel spacing for duplex operation in each frequency band except for bands above 60 GHz. Details of standard systems assigned in the UK are shown in the relevant technical frequency assignment criteria.

For Further Information

For More Information on Microwave Planning, Please Contact Us

OFCOM Channel Plans for 23GHz and 26GHz

OFCOM Channel Plans for 23GHz and 26GHz

Here is a chart showing channel plans for the UK

OFCOM - 23GHz 26GHz
OFCOM – 23GHz 26GHz

Uses & Applications

23GHz and 26GHz bands are used for Point to Point (P2P) Microwave Radio Links

Sources of Data and Graphics

All contents (C) OFCOM and taken from:

OfW48 UK Frequency Allocations for Fixed (Point-to-Point) Wireless Services and Scanning Telemetry This document shows the current bands managed by Ofcom that are available for fixed terrestrial (point to point) links and scanning telemetry in the UK.

Technical regulations

The Radio Equipment and Telecommunications Terminal Equipment Directive
99/5/EC (R&TTED) has been implemented in ‘The Radio Equipment and Telecommunications Terminal Equipment Regulations 2000, Statutory
Instrument (SI) 730. In accordance with Articles 4.1 and 7.2 of the R&TTED
the:
• IR2000: The UK Interface Requirement 2000 contains the requirements for the licensing and use of fixed (point-to-point) wireless services in the UK.
• IR2037: The UK Interface Requirement 2037 applies for scanning telemetry services.
• IR2078: The UK Interface Requirement 2078 applies for the 60 GHz band

Notes specific to the frequency charts

The first column describes each available frequency band, represented by a diagram (not to scale). The frequency band limits are listed below the diagram; frequencies below 10 GHz are represented in MHz, while those above 10 GHz are in GHz. The width of each guard band is shown above the diagram, and is always specified in MHz.
The channel arrangements in some bands are staggered, so that the width and position of the guard band vary for different channel spacings. In these cases, a table underneath gives details of the guard bands for different spacings (with all frequencies in MHz).
The first column also includes the title of the relevant international recommendations for each band, produced by the European Conference of Postal and Telecommunications (CEPT) or the International Telecommunication Union (ITU). CEPT recommendations are available at http://www.cept.org/ecc/ and ITU Recommendations at http://www.itu.int.
The final column contains the channel spacing for duplex operation in each frequency band except for bands above 60 GHz. Details of standard systems assigned in the UK are shown in the relevant technical frequency assignment criteria.

For Further Information

For More Information on Microwave Planning, Please Contact Us

OFCOM Channel Plans for 18GHz

OFCOM Channel Plans for 18GHz

Here is a chart showing channel plans for the UK

OFCOM - 18GHz
OFCOM – 18GHz

Uses & Applications

18GHz bands are used for Point to Point (P2P) Microwave Radio Links

Sources of Data and Graphics

All contents (C) OFCOM and taken from:

OfW48 UK Frequency Allocations for Fixed (Point-to-Point) Wireless Services and Scanning Telemetry This document shows the current bands managed by Ofcom that are available for fixed terrestrial (point to point) links and scanning telemetry in the UK.

Technical regulations

The Radio Equipment and Telecommunications Terminal Equipment Directive
99/5/EC (R&TTED) has been implemented in ‘The Radio Equipment and Telecommunications Terminal Equipment Regulations 2000, Statutory
Instrument (SI) 730. In accordance with Articles 4.1 and 7.2 of the R&TTED
the:
• IR2000: The UK Interface Requirement 2000 contains the requirements for the licensing and use of fixed (point-to-point) wireless services in the UK.
• IR2037: The UK Interface Requirement 2037 applies for scanning telemetry services.
• IR2078: The UK Interface Requirement 2078 applies for the 60 GHz band

Notes specific to the frequency charts

The first column describes each available frequency band, represented by a diagram (not to scale). The frequency band limits are listed below the diagram; frequencies below 10 GHz are represented in MHz, while those above 10 GHz are in GHz. The width of each guard band is shown above the diagram, and is always specified in MHz.
The channel arrangements in some bands are staggered, so that the width and position of the guard band vary for different channel spacings. In these cases, a table underneath gives details of the guard bands for different spacings (with all frequencies in MHz).
The first column also includes the title of the relevant international recommendations for each band, produced by the European Conference of Postal and Telecommunications (CEPT) or the International Telecommunication Union (ITU). CEPT recommendations are available at http://www.cept.org/ecc/ and ITU Recommendations at http://www.itu.int.
The final column contains the channel spacing for duplex operation in each frequency band except for bands above 60 GHz. Details of standard systems assigned in the UK are shown in the relevant technical frequency assignment criteria.

For Further Information

For More Information on Microwave Planning, Please Contact Us