MIMO Technology for Microwave Links

An Introduction to MIMO Radio technology

In radio technology, multiple-input and multiple-output, or MIMO , is a method for multiplying the capacity of a radio link using multiple transmit and receive antennas to exploit multipath propagation.

MIMO Radio TechnologyMIMO has become an essential element of wireless communication standards including IEEE 802.11n (Wi-Fi), IEEE 802.11ac (Wi-Fi), HSPA+ (3G), WiMAX (4G), and Long Term Evolution (4G)

Earlier usage of the term “MIMO” referred to the use of multiple antennas at both the transmitter and the receiver. In modern usage, “MIMO” specifically refers to a practical technique for sending and receiving more than one data signal on the same radio channel at the same time via multipath propagation. MIMO is fundamentally different from smart antenna techniques developed to enhance the performance of a single data signal, such as beamforming and diversity.
MIMO can be sub-divided into three main categories, precoding, spatial multiplexing or SM, and diversity coding.

Products using MIMO technology

CableFree products that use MIMO include:

CableFree MIMO radio technology
CableFree MIMO radio technology

Functions of MIMO technology

Precoding is multi-stream beamforming, in the narrowest definition. In more general terms, it is considered to be all spatial processing that occurs at the transmitter. In (single-stream) beamforming, the same signal is emitted from each of the transmit antennas with appropriate phase and gain weighting such that the signal power is maximized at the receiver input. The benefits of beamforming are to increase the received signal gain – by making signals emitted from different antennas add up constructively – and to reduce the multipath fading effect. In line-of-sight propagation, beamforming results in a well-defined directional pattern. However, conventional beams are not a good analogy in cellular networks, which are mainly characterized by multipath propagation. When the receiver has multiple antennas, the transmit beamforming cannot simultaneously maximize the signal level at all of the receive antennas, and precoding with multiple streams is often beneficial. Note that precoding requires knowledge of channel state information (CSI) at the transmitter and the receiver.

Spatial multiplexing requires MIMO antenna configuration. In spatial multiplexing, a high-rate signal is split into multiple lower-rate streams and each stream is transmitted from a different transmit antenna in the same frequency channel. If these signals arrive at the receiver antenna array with sufficiently different spatial signatures and the receiver has accurate CSI, it can separate these streams into (almost) parallel channels. Spatial multiplexing is a very powerful technique for increasing channel capacity at higher signal-to-noise ratios (SNR). The maximum number of spatial streams is limited by the lesser of the number of antennas at the transmitter or receiver. Spatial multiplexing can be used without CSI at the transmitter, but can be combined with precoding if CSI is available. Spatial multiplexing can also be used for simultaneous transmission to multiple receivers, known as space-division multiple access or multi-user MIMO, in which case CSI is required at the transmitter.[32] The scheduling of receivers with different spatial signatures allows good separability.

Diversity Coding techniques are used when there is no channel knowledge at the transmitter. In diversity methods, a single stream (unlike multiple streams in spatial multiplexing) is transmitted, but the signal is coded using techniques called space-time coding. The signal is emitted from each of the transmit antennas with full or near orthogonal coding. Diversity coding exploits the independent fading in the multiple antenna links to enhance signal diversity. Because there is no channel knowledge, there is no beamforming or array gain from diversity coding. Diversity coding can be combined with spatial multiplexing when some channel knowledge is available at the transmitter.

Forms of MIMO

Multi-antenna MIMO (or Single user MIMO) technology has been developed and implemented in some standards, e.g., 802.11n products.

  • SISO/SIMO/MISO are special cases of MIMO
    • Multiple-input and single-output (MISO) is a special case when the receiver has a single antenna.
    • Single-input and multiple-output (SIMO) is a special case when the transmitter has a single antenna.
    • Single-input single-output (SISO) is a conventional radio system where neither the transmitter nor receiver has multiple antenna.
  • Principal single-user MIMO techniques
  • Some limitations
    • The physical antenna spacing is selected to be large; multiple wavelengths at the base station. The antenna separation at the receiver is heavily space-constrained in handsets, though advanced antenna design and algorithm techniques are under discussion.

Microwave Link Technology

Introduction to Microwave

Example of a CableFree Microwave Link Installation
Example of a CableFree Microwave Link Installation

Microwave is a line-of-sight wireless communication technology that uses high frequency beams of radio waves to provide high speed wireless connections that can send and receive voice, video, and data information.

Microwave links are are widely used for point-to-point communications because their small wavelength allows conveniently-sized antennas to direct them in narrow beams, which can be pointed directly at the receiving antenna. This allows nearby microwave equipment to use the same frequencies without interfering with each other, as lower frequency radio waves do. Another advantage is that the high frequency of microwaves gives the microwave band a very large information-carrying capacity; the microwave band has a bandwidth 30 times that of all the rest of the radio spectrum below it.

Microwave radio transmission is commonly used in point-to-point communication systems on the surface of the Earth, in satellite communications, and in deep space radio communications. Other parts of the microwave radio band are used for radars, radio navigation systems, sensor systems, and radio astronomy.

The higher part of the radio electromagnetic spectrum with frequencies are above 30 GHz and below 100 GHz, are called “millimeter waves” because their wavelengths are conveniently measured in millimeters, and their wavelengths range from 10 mm down to 3.0 mm. Radio waves in this band are usually strongly attenuated by the Earthly atmosphere and particles contained in it, especially during wet weather. Also, in wide band of frequencies around 60 GHz, the radio waves are strongly attenuated by molecular oxygen in the atmosphere. The electronic technologies needed in the millimeter wave band are also much more complex and harder to manufacture than those of the microwave band, hence cost of Millimeter Wave Radios are generally higher.

History of Microwave Communication

James Clerk Maxwell, using his famous “Maxwell’s equations,” predicted the existence of invisible electromagnetic waves, of which microwaves are a part, in 1865. In 1888, Heinrich Hertz became the first to demonstrate the existence of such waves by building an apparatus that produced and detected microwaves in the ultra high frequency region. Hertz recognized that the results of his experiment validated Maxwell’s prediction, but he did not see any practical applications for these invisible waves. Later work by others led to the invention of wireless communications, based on microwaves. Contributors to this work included Nikola Tesla, Guglielmo Marconi, Samuel Morse, Sir William Thomson (later Lord Kelvin), Oliver Heaviside, Lord Rayleigh, and Oliver Lodge.

Microwave Link over English Channel, 1931
Microwave Link over English Channel, 1931

In 1931 a US-French consortium demonstrated an experimental microwave relay link across the English Channel using 10 foot (3m) dishes, one of the earliest microwave communication systems. Telephony, telegraph and facsimile data was transmitted over the 1.7 GHz beams 40 miles between Dover, UK and Calais, France. However it could not compete with cheap undersea cable rates, and a planned commercial system was never built.
During the 1950s the AT&T Long Lines system of microwave relay links grew to carry the majority of US long distance telephone traffic, as well as intercontinental television network signals. The prototype was called TDX and was tested with a connection between New York City and Murray Hill, the location of Bell Laboratories in 1946. The TDX system was set up between New York and Boston in 1947.

Modern Commercial Microwave Links

CableFree Microwave Communication Tower
Microwave Communication Tower

A microwave link is a communications system that uses a beam of radio waves in the microwave frequency range to transmit video, audio, or data between two locations, which can be from just a few feet or meters to several miles or kilometers apart. Examples of Commercial Microwave links from CableFree may be see here. Modern Microwave Links can carry up to 400Mbps in a 56MHz channel using 256QAM modulation and IP header compression techniques.  Operating Distances for microwave links are determined by antenna size (gain), frequency band, and link capacity.  The availability of clear Line of Sight is crucial for Microwave links for which the Earth’s curvature has to be allowed

CableFree FOR2 Microwave Link 400Mbps
CableFree FOR2 Microwave Link 400Mbps

Microwave links are commonly used by television broadcasters to transmit programmes across a country, for instance, or from an outside broadcast back to a studio. Mobile units can be camera mounted, allowing cameras the freedom to move around without trailing cables. These are often seen on the touchlines of sports fields on Steadicam systems.

Planning of microwave links

CableFree Microwave links have to be planned considering the following parameters:

  • Required distance (km/miles) and capacity (Mbps)
  • Desired Availability target (%) for the link
  • Availability of Clear Line of Sight (LOS) between end nodes
  • Towers or masts if required to achieve clear LOS
  • Allowed frequency bands specific to region/country
  • Environmental constraints, including rain fade
  • Cost of licenses for required frequency bands

Microwave Frequency Bands

Microwave Frequency Bands
Microwave Frequency Bands

Microwave signals are often divided into three categories:
ultra high frequency (UHF) (0.3-3 GHz);
super high frequency (SHF) (3-30 GHz); and
extremely high frequency (EHF) (30-300 GHz).
In addition, microwave frequency bands are designated by specific letters. The designations by the Radio Society of Great Britain are given below.
Microwave frequency bands
Designation Frequency range
L band 1 to 2 GHz
S band 2 to 4 GHz
C band 4 to 8 GHz
X band 8 to 12 GHz
Ku band 12 to 18 GHz
K band 18 to 26.5 GHz
Ka band 26.5 to 40 GHz
Q band 30 to 50 GHz
U band 40 to 60 GHz
V band 50 to 75 GHz
E band 60 to 90 GHz
W band 75 to 110 GHz
F band 90 to 140 GHz
D band 110 to 170 GHz

The term “P band” is sometimes used for ultra high frequencies below the L-band. For other definitions, see Letter Designations of Microwave Bands

Lower Microwave frequencies are used for longer links, and regions with higher rain fade.  Conversely, Higher frequencies are used for shorter links and regions with lower rain fade.

Rain Fade on Microwave Links

Microwave Link Rain FadeRain fade refers primarily to the absorption of a microwave radio frequency (RF) signal by atmospheric rain, snow or ice, and losses which are especially prevalent at frequencies above 11 GHz. It also refers to the degradation of a signal caused by the electromagnetic interference of the leading edge of a storm front. Rain fade can be caused by precipitation at the uplink or downlink location. However, it does not need to be raining at a location for it to be affected by rain fade, as the signal may pass through precipitation many miles away, especially if the satellite dish has a low look angle. From 5 to 20 percent of rain fade or satellite signal attenuation may also be caused by rain, snow or ice on the uplink or downlink antenna reflector, radome or feed horn. Rain fade is not limited to satellite uplinks or downlinks, it also can affect terrestrial point to point microwave links (those on the earth’s surface).

Possible ways to overcome the effects of rain fade are site diversity, uplink power control, variable rate encoding, receiving antennas larger (i.e. higher gain) than the required size for normal weather conditions, and hydrophobic coatings.

Diversity in Microwave Links

Example of a 1+0 Unprotected Microwave Link
Example of a 1+0 Unprotected Microwave Link

In terrestrial microwave links, a diversity scheme refers to a method for improving the reliability of a message signal by using two or more communication channels with different characteristics. Diversity plays an important role in combatting fading and co-channel interference and avoiding error bursts. It is based on the fact that individual channels experience different levels of fading and interference. Multiple versions of the same signal may be transmitted and/or received and combined in the receiver. Alternatively, a redundant forward error correction code may be added and different parts of the message transmitted over different channels. Diversity techniques may exploit the multipath propagation, resulting in a diversity gain, often measured indecibels.

The following classes of diversity schemes are typical in Terrestrial Microwave Links:

  • Unprotected:  Microwave links where there is no diversity or protection are classified as Unprotected and also as 1+0.  There is one set of equipment installed, and no diversity or backup
  • Hot Standby: Two sets of microwave equipment (ODUs, or active radios) are installed generally connected to the same antenna, tuned to the same frequency channel.  One is “powered down” or in standby mode, generally with the receiver active but transmitter muted.  If the active unit fails, it is powered down and the standby unit is activated.  Hot Standby is abbreviated as HSB, and is often used in 1+1 configurations (one active, one standby).
  • Frequency diversity: The signal is transmitted using several frequency channels or spread over a wide spectrum that is affected by frequency-selective fading. Microwave radio links often use several active radio channels plus one protection channel for automatic use by any faded channel. This is known as N+1 protection
  • Space diversity: The signal is transmitted over several different propagation paths. In the case of wired transmission, this can be achieved by transmitting via multiple wires. In the case of wireless transmission, it can be achieved by antenna diversity using multiple transmitter antennas (transmit diversity) and/or multiple receiving antennas (reception diversity).
  • Polarization diversity: Multiple versions of a signal are transmitted and received via antennas with different polarization. A diversity combining technique is applied on the receiver side.

Diverse Path Resilient Failover

In terrestrial point to point microwave systems ranging from 11 GHz to 80 GHz, a parallel backup link can be installed alongside a rain fade prone higher bandwidth connection. In this arrangement, a primary link such as an 80GHz 1 Gbit/s full duplex microwave bridge may be calculated to have a 99.9% availability rate over the period of one year. The calculated 99.9% availability rate means that the link may be down for a cumulative total of ten or more hours per year as the peaks of rain storms pass over the area. A secondary lower bandwidth link such as a 5.8 GHz based 100 Mbit/s bridge may be installed parallel to the primary link, with routers on both ends controlling automatic failover to the 100 Mbit/s bridge when the primary 1 Gbit/s link is down due to rain fade. Using this arrangement, high frequency point to point links (23GHz+) may be installed to service locations many kilometers farther than could be served with a single link requiring 99.99% uptime over the course of one year.

Automatic Coding and Modulation (ACM)

Microwave Adaptive Coding and Modulation (ACM)
Microwave Adaptive Coding and Modulation (ACM)

Link adaptation, or Adaptive Coding and Modulation (ACM), is a term used in wireless communications to denote the matching of the modulation, coding and other signal and protocol parameters to the conditions on the radio link (e.g. the pathloss, the interference due to signals coming from other transmitters, the sensitivity of the receiver, the available transmitter power margin, etc.). For example, EDGE uses a rate adaptation algorithm that adapts the modulation and coding scheme (MCS) according to the quality of the radio channel, and thus the bit rate and robustness of data transmission. The process of link adaptation is a dynamic one and the signal and protocol parameters change as the radio link conditions change.

The goal of Adaptive Modulation is to improve the operational efficiency of Microwave links by increasing network capacity over the existing infrastructure – while reducing sensitivity to environmental interferences.
Adaptive Modulation means dynamically varying the modulation in an errorless manner in order to maximize the throughput under momentary propagation conditions. In other words, a system can operate at its maximum throughput under clear sky conditions, and decrease it
gradually under rain fade.  For example a link can change from 256QAM down to QPSK to keep “link alive” without losing connection.  Prior to the development of Automatic Coding and Modulation, microwave designers had to design for “worst case” conditions to avoid link outage The benefits of using ACM include:

  • Longer link lengths (distance)
  • Using smaller antennas (saves on mast space, also often required in residential areas)
  • Higher Availability (link reliability)

Automatic Transmit Power Control (ATPC)

CableFree Microwave links feature ATPC which automatically increases the transmit power during “Fade” conditions such as heavy rainfall.  ATPC can be used separately to ACM or together to maximise link uptime, stability and availability.  When the “fade” conditions (rainfall) are over, the ATPC system reduces the transmit power again.  This reduces the stress on the microwave power amplifiers, which reduces power consumption, heat generation and increases expected lifetime (MTBF)

Uses of microwave links

  • Backbone links and “Last Mile” Communication for cellular network operators
  • Backbone links for Internet Service Providers (ISPs) and Wireless ISPs (WISPs)
  • Corporate Networks for Building to Building and campus sites
  • Telecommunications, in linking remote and regional telephone exchanges to larger (main) exchanges without the need for copper/optical fibre lines.
  • Broadcast Television with HD-SDI and SMPTE standards

Enterprise

Because of the scalability and flexibility of Microwave technology, Microwave products can be deployed in many enterprise applications including building-to-building connectivity, disaster recovery, network redundancy and temporary connectivity for applications such as data, voice and data, video services, medical imaging, CAD and engineering services, and fixed-line carrier bypass.

Mobile Carrier Backhaul

CableFree Microwave Cellular Network
Microwave Backhaul in Cellular Networks

 

Microwave Links are a valuable tool in Mobile Carrier Backhaul: Microwave technology can be deployed to provide traditional PDH 16xE1/T1, STM-1 and STM-4, and Modern IP Gigabit Ethernet backhaul connectivity and Greenfield mobile networks.  Microwave is far quicker to install and lower Total Cost of Ownership for Cellular Network Operators compared to deploying or leasing fibre optic networks

Low Latency Networks

CableFree Low Latency versions of Microwave links uses Low Latency Microwave Link Technology, with absolutely minimal delay between packets being transmitted and received at the other end, except the Line of Sight propagation delay.  The Speed of Microwave propagation through the air is approximately 40% higher than through fibre optics, giving customers an immediate 40% reduction in latency compared to fibre optics.  In addition, fibre optic installations are almost never in a straight line, with realities of building layout, street ducts and requirement to use existing telecom infrastructure, the fibre run can be 100% longer than the direct Line of Sight path between two end points.  Hence CableFree Low Latency Microwave products are popular in Low Latency Applications such as High Frequency Trading and other uses.

For Further Information on Microwave

To find out more about Microwave Link Technology and how CableFree can assist with your wireless network, please Contact Us