V-Band 60GHz Millimeter Wave MMW Technology

Multi-Gigabit Links using V-Band 60GHz Millimeter Wave MMW Technology

So-called “V-Band” refers to high frequency microwave signals in the Millimeter Wave radio bands which enable high capacity wireless communications.  The band is useful for moderate distances up to around 1km with clear “line of sight”, and for short-range mobile devices.  In many countries, V-band is “Unlicensed” (license free) which encourages widespread use.

What is 60GHz V-band technology?

The V band (“vee-band”) is a standard designation by the Institute of Electrical and Electronic Engineers (IEEE) for a band of frequencies in the microwave portion of the electromagnetic spectrum ranging from 40 to 75 gigahertz (GHz).The V band is not heavily used, except for millimeter wave radar research and other kinds of scientific research. It should not be confused with the 600–1000 MHz range of Band-V (band-five) of the UHF frequency range.

CableFree V-Band 60GHz MMW Link
CableFree V-Band 60GHz MMW Link with High Gain parabolic antenna

The V band is also used for high capacity terrestrial millimeter wave communications systems. In the United States, the Federal Communications Commission has allocated the frequency band from 57 to 71 GHz for unlicensed wireless systems. These systems are primarily used for high capacity, short distance (less than 1 mile) communications. In addition, frequencies at 70, 80, and 90 GHz have been allocated as “lightly licensed” bands for multi-gigabit wireless communications. All communications links in the V band require unobstructed line of sight between the transmit and receive point, and rain fade must be taken into account when performing link budget analysis.

Applications for 60GHz V-band

Very short range Wi-Fi

The Wi-Fi standard IEEE 802.11ad utilizes the 60 GHz (EHF microwave) spectrum with data transfer rates of up to 7 Gbit/s for very short ranges of up to 10 metres (33 ft).  Also the newer IEEE 802.11ay uses the same band.  Where 802.11ad uses a maximum of 2.16 GHz bandwidth, 802.11ay bonds four of those channels together for a maximum bandwidth of 8.64 GHz. MIMO is also added with a maximum of 4 streams. The link-rate per stream is 44Gbit/s, with four streams this goes up to 176Gbit/s. Higher order modulation is also added, probably up to 256-QAM.

Mobile backhaul

As mobile operators need more and more bandwidth, they are turning to new frequency bands to lower their wireless backhaul costs. Both license-exempt V band spectrum (57-71 GHz) and E band spectrum (71-76 GHz, 81-86 GHz and 92-95 GHz) have clear technological and economic advantages. The 27 GHz allocated in these bands allows multi-Gigabit per second capacities far exceeding the 6-38 GHz bandwidth-limited frequencies.

In the V band and E band spectrum, wireless systems can utilize the significantly larger allocated spectrum and channels to deliver multi-Gigabit data rates. This enables a simple, robust, and low cost modem and radio design. Thus, V-Band and E-Band, millimeter-wave wireless systems provide significant cost advantages over 6-38 GHz wireless systems – allowing scaling capacity to Gigabit capacities, without additional radio equipment and licensing fees.

Wireless broadband

Internet service providers are looking for ways to expand gigabit high-speed services to their customers. These can be achieved through fiber to the premises broadband network architecture, or a more affordable alternative using fixed wireless in the last mile in combination with the fiber networks in the middle mile in order to reduce the costs of trenching fiber optic cables to the users. In the United States, V band is unlicensed. This makes V band an appealing choice to be used as fixed wireless access for gigabit services to connect to homes and businesses.

Satellite constellations

As of March 2017, several US companies—Boeing, SpaceX, OneWeb, Telesat, O3b Networks and Theia Holdings—have each filed with the US regulatory authorities “plans to field constellations of V-band satellites in non-geosynchronous orbits to provide communications services,” an electromagnetic spectrum that had not previously been “heavily employed for commercial communications services.”

V-Band Regulations and Licensing

In many countries, V-band is “Unlicensed” (license free) which encourages widespread use.  A few countries retain 60GHz for licensed or defence applications.  The specific frequencies which are allowed to be used can vary between different countries.

For More Information on V-Band Millimeter Wave

For more information on V-Band MMW, Please Contact Us

Current Trends in Microwave Backhaul

Microwave Backhaul: Current and Future Trends

What’s happening in Microwave Backhaul? According to the Ericsson Mobility Report Q4 2017, 3.3 billion mobile broadband subscribers will be added  in the next five years, and a clear majority of these will come from LTE and 3G/HSPA in microwave-centric markets. The addition of an Indian greenfield LTE/4G operator and the densification needed to support proper MBB services will increase the number of sites, stabilizing microwave share on a global basis.
The large-scale 5G volume deployments are initially expected in areas with high fiber penetration, such as China, Korea, Japan and US.
There are also operators in Western Europe that have a combination of microwave and fiber, and are looking at introducing 5G. Larger volume rollouts of 5G networks are planned for a later point in the next few years.

CableFree-Microwave-Fiber-Copper-Backhaul-Global-to-2022

Backhaul media distribution (excluding China, Japan, Korea and Taiwan)

 

CableFree-Microwave-Fiber-Copper-Backhaul-Regions

In mature mobile broadband regions such as Western Europe, there are
examples of large operators using up to 80 percent microwave that now
plan for 5G introduction using existing microwave networks. Microwave
technology has evolved to manage the demand of mobile networks,
and can do so from any macro site. Core and inter-city aggregation
networks are typically deployed with fiber backhaul, while spurs are
implemented using microwave. It has also been observed that usage of
lower spectrum for longer-distance hops is decreasing in favor of
higher-frequency bands for short distance and high-capacity hops.

Number of Microwave Hops in Europe according to CEPT
Number of Microwave Hops in Europe according to CEPT

Spectrum trends up to 2025

Spectrum below 3GHz will provide coverage in 5G. The 3–5GHz spectrum will enable high bandwidth balanced with good coverage. These bands are not used by microwave today to any major extent (apart from some 4 and 5GHz long-haul links). The extreme bandwidths in 5G will be enabled for hotspots and industry applications in spectrum above 20GHz.
It is clear that the main focus will be on bands 24–42GHz. In the US the FCC currently has a 24, 28 and 38GHz focus and in Europe there is a focus on 26GHz. 3GPP is specifying 5G bands in 24.25–29.5GHz and 37–43.5GHz in Release 15. It excludes 32GHz and E-band, which are both part of the ITU study and, in a recent report, the FCC stresses the importance of E-band for 5G backhaul. The decision on which bands to use and where, will be unique to each nation. But longterm parts of the 24–42GHz spectrum will be used more by 5G and less by microwave fixed services. In some of these bands, e.g. 26 and 38GHz
in Europe, there are many existing microwave links in several countries.
It will take time to move these links to other bands such as E-band. The 15–23GHz spectrum will remain as the global high-volume microwave bands. E-band will become a global high-volume band, both on its own and in a multi-band booster combination with 15–23GHz.
For long hops and as an economical replacement to fiber, 6–13GHz will also remain important. Due to their good propagation properties in geographical areas with high rain rates, these low frequencies are fundamental to building transport networks in certain regions.
With all of this taken into account, it is clear that the availability and usage of microwave spectrum will go through a major transformation in the next 5 to 10 years

CableFree Microwave New deployment share per frequency range
New deployment share per frequency range

Higher Capacities: Radio Link Aggregation

When combining data over multiple carriers, radio link bonding is a key technology. An efficient bonding technique ensures that a single data stream is seamlessly transmitted across different radio channels, with negligible overhead.  In the current Global market: About 80 percent of links are configured as single carriers (1+0), the remainder as multi-carrier links with backup links as protection. About 8 percent are set up with one active radio and the protection link in hot standby mode (1+1); 10 percent are configured with dual-carrier radio link bonding (2+0), where the capacity of the backup link is used to increase the link’s peak capacity. Only 2 percent are configured for three or more carriers (>2+0). Due to the need for increased transport capacity, the number of links aggregated over two or more carriers is rising globally.

CableFree Microwave Global distribution of radio link configurations. 80 percent are configured as single-carrier links (1+0), 20 percent are configured as multiple radio links
Global distribution of radio link configurations. 80 percent are configured as single-carrier links (1+0), 20 percent are configured as multiple radio links

Total Cost of Ownership (TCO) and Return-on-Investment (ROI)

The total cost of ownership and time-to-market becomes critical to
secure the overall operator business case. As fiber investments typically
have a depreciation of around 25 years, and 5–8 years for microwave,
it becomes important to invest in fiber within the right areas, such
as core and aggregation networks, which historically have been
deployed with long-haul microwave.

Technology Evolution for Microwave

Over the past 20 years, microwave technology has been continuously
evolving to meet requirements. In 1996, microwave hops typically
supported 34Mbps, whereas today products have the ability to support
up to 1Gbps in traditional bands, and up to 10Gbps with E-Band.

Microwave Technology Roadmap and Evolution
Microwave Technology Roadmap and Evolution

Acknowledgement

Some content is (C) Ericsson reproduced with thanks, from Ericsson Mobility Report Q4 2017

For Further Information

For More Information on Microwave Links, Please Contact Us

 

OFCOM Channel Plans for E-band 70GHz-80GHz

OFCOM Channel Plans for E-band 70GHz-80GHz

Here is a chart showing channel plans for the UK

OFCOM - E-Band
OFCOM – E-Band

Uses & Applications

70GHz to 80GHz bands (E-band) are used for Point to Point (P2P) Microwave (Millimeter Wave, MMW) Radio Links

Sources of Data and Graphics

All contents (C) OFCOM and taken from:

OfW48 UK Frequency Allocations for Fixed (Point-to-Point) Wireless Services and Scanning Telemetry This document shows the current bands managed by Ofcom that are available for fixed terrestrial (point to point) links and scanning telemetry in the UK.

Technical regulations

The Radio Equipment and Telecommunications Terminal Equipment Directive
99/5/EC (R&TTED) has been implemented in ‘The Radio Equipment and Telecommunications Terminal Equipment Regulations 2000, Statutory
Instrument (SI) 730. In accordance with Articles 4.1 and 7.2 of the R&TTED
the:
• IR2000: The UK Interface Requirement 2000 contains the requirements for the licensing and use of fixed (point-to-point) wireless services in the UK.
• IR2037: The UK Interface Requirement 2037 applies for scanning telemetry services.
• IR2078: The UK Interface Requirement 2078 applies for the 60 GHz band

Notes specific to the frequency charts

The first column describes each available frequency band, represented by a diagram (not to scale). The frequency band limits are listed below the diagram; frequencies below 10 GHz are represented in MHz, while those above 10 GHz are in GHz. The width of each guard band is shown above the diagram, and is always specified in MHz.
The channel arrangements in some bands are staggered, so that the width and position of the guard band vary for different channel spacings. In these cases, a table underneath gives details of the guard bands for different spacings (with all frequencies in MHz).
The first column also includes the title of the relevant international recommendations for each band, produced by the European Conference of Postal and Telecommunications (CEPT) or the International Telecommunication Union (ITU). CEPT recommendations are available at http://www.cept.org/ecc/ and ITU Recommendations at http://www.itu.int.
The final column contains the channel spacing for duplex operation in each frequency band except for bands above 60 GHz. Details of standard systems assigned in the UK are shown in the relevant technical frequency assignment criteria.

For Further Information

For More Information on Microwave Planning, Please Contact Us

OFCOM Channel Plans for 60GHz and 65GHz

OFCOM Channel Plans for 60GHz and 65GHz

Here is a chart showing channel plans for the UK

OFCOM - V-Band 60GHz 65GHz
OFCOM – V-Band 60GHz 65GHz

Uses & Applications

58GHz, 60GHz and 65GHz bands are used for Point to Point (P2P) Microwave Radio Links.  Also called V-band

Sources of Data and Graphics

All contents (C) OFCOM and taken from:

OfW48 UK Frequency Allocations for Fixed (Point-to-Point) Wireless Services and Scanning Telemetry This document shows the current bands managed by Ofcom that are available for fixed terrestrial (point to point) links and scanning telemetry in the UK.

Technical regulations

The Radio Equipment and Telecommunications Terminal Equipment Directive
99/5/EC (R&TTED) has been implemented in ‘The Radio Equipment and Telecommunications Terminal Equipment Regulations 2000, Statutory
Instrument (SI) 730. In accordance with Articles 4.1 and 7.2 of the R&TTED
the:
• IR2000: The UK Interface Requirement 2000 contains the requirements for the licensing and use of fixed (point-to-point) wireless services in the UK.
• IR2037: The UK Interface Requirement 2037 applies for scanning telemetry services.
• IR2078: The UK Interface Requirement 2078 applies for the 60 GHz band

Notes specific to the frequency charts

The first column describes each available frequency band, represented by a diagram (not to scale). The frequency band limits are listed below the diagram; frequencies below 10 GHz are represented in MHz, while those above 10 GHz are in GHz. The width of each guard band is shown above the diagram, and is always specified in MHz.
The channel arrangements in some bands are staggered, so that the width and position of the guard band vary for different channel spacings. In these cases, a table underneath gives details of the guard bands for different spacings (with all frequencies in MHz).
The first column also includes the title of the relevant international recommendations for each band, produced by the European Conference of Postal and Telecommunications (CEPT) or the International Telecommunication Union (ITU). CEPT recommendations are available at http://www.cept.org/ecc/ and ITU Recommendations at http://www.itu.int.
The final column contains the channel spacing for duplex operation in each frequency band except for bands above 60 GHz. Details of standard systems assigned in the UK are shown in the relevant technical frequency assignment criteria.

For Further Information

For More Information on Microwave Planning, Please Contact Us

10Gbps MMW Links installed in the Middle East

CableFree 10Gbps MMW links have been installed in the Middle East for Safe City applications

Using the latest 10Gbps Millimeter Wave wireless technology, the links connect customer sites with a full 10Gbps (10Gig-E) full duplex capacity, with no compression or slow-down.

10Gbps MMW Links installed in the Middle East
10Gbps MMW Links installed in the Middle East

CableFree has pioneered high speed 10 Gigabit Millimeter Wave (MMW) technology to connect sites where fibre optics are unavailable, too slow to provision, too expensive or at risk of damage. In busy cities, fibre optics is usually installed in ducts underground which are prone to disruption when digging or building works take place.

This client had already installed fibre optics for major CCTV backbones around the city. However, 3rd party building works disrupted the ducts severing the fibres, causing major outage in the network and loss of CCTV coverage – putting citizens at risk.

10Gbps MMW Links installed in the Middle East
10Gbps MMW Links installed in the Middle East

CableFree 10Gbps Millimeter Wave links offer an ideal alternative to fragile fibre optics: the radio units are installed on sites owned by the customer, bringing the full network under user control and management. The units are typically mounted on building rooftops well away from street-level disruption, which are easy to access, secure and defend. MMW wireless links can be installed in hours, not weeks, and at a tiny fraction of the cost of trenches and ducts for fibre optics.

Reliable operating distances of 5-8km depending on climatic region are ideal for city-scale networks. A full range of planning tools allows users to predict performance prior to purchase or installation. The E-band (70-80GHz) frequencies are available in many countries with “light license” and are uncongested, with narrow “pencil beams” allowing dense re-use of the spectrum with no interference between links or users. The narrow beams make such link are inherently secure, with proprietary signals and encoding.

ACM Automatic Coding Modulation for 10Gbps MMW LinksFor long links, the Adaptive Coding and Modulation feature enables the MMW link to dynamically adjust modulation in high rainfall conditions to ensure link uptime, capacity and range are maximised. For shorter links and long links in low rainfall regions, the links retain 10Gbps at all times.

10Gbps MMW links are a movable asset: if the network requirements change, or different sites require connecting, the links can be moved to the new sites immediately, retaining all the investment in infrastructure. For Special Events and Disaster Recovery, temporary links can be deployed using generator or alternative “off grid” (Solar + Battery) power if no AC power is available on sites. The units can be mounted on tripods or stationary vehicles as required for rapid deployment.

ACM Automatic Coding Modulation for 10Gbps MMW Links
ACM Automatic Coding Modulation for 10Gbps MMW Links

For mobile operators, advanced features such as IEEE 1588v2, SyncE and management are included which make CableFree MMW ideal for RAN backhaul for 4G & 5G networks. CableFree 10Gbps MMW is upgradable to 20Gbps and 40Gbps with “stacking” giving the very highest throughput in the wireless industry, comparable to fibre optic backbone networks.

For more information please visit the CableFree website or contact our expert team:

www.cablefree.net/10g