OFCOM Channel Plans for 52GHz and 55GHz

OFCOM Channel Plans for 52GHz and 55GHz

Here is a chart showing channel plans for the UK

OFCOM - 52GHz 55GHz
OFCOM – 52GHz 55GHz

Uses & Applications

52GHz and 55GHz bands are used for Point to Point (P2P) Microwave Radio Links

Sources of Data and Graphics

All contents (C) OFCOM and taken from:

OfW48 UK Frequency Allocations for Fixed (Point-to-Point) Wireless Services and Scanning Telemetry This document shows the current bands managed by Ofcom that are available for fixed terrestrial (point to point) links and scanning telemetry in the UK.

Technical regulations

The Radio Equipment and Telecommunications Terminal Equipment Directive
99/5/EC (R&TTED) has been implemented in ‘The Radio Equipment and Telecommunications Terminal Equipment Regulations 2000, Statutory
Instrument (SI) 730. In accordance with Articles 4.1 and 7.2 of the R&TTED
the:
• IR2000: The UK Interface Requirement 2000 contains the requirements for the licensing and use of fixed (point-to-point) wireless services in the UK.
• IR2037: The UK Interface Requirement 2037 applies for scanning telemetry services.
• IR2078: The UK Interface Requirement 2078 applies for the 60 GHz band

Notes specific to the frequency charts

The first column describes each available frequency band, represented by a diagram (not to scale). The frequency band limits are listed below the diagram; frequencies below 10 GHz are represented in MHz, while those above 10 GHz are in GHz. The width of each guard band is shown above the diagram, and is always specified in MHz.
The channel arrangements in some bands are staggered, so that the width and position of the guard band vary for different channel spacings. In these cases, a table underneath gives details of the guard bands for different spacings (with all frequencies in MHz).
The first column also includes the title of the relevant international recommendations for each band, produced by the European Conference of Postal and Telecommunications (CEPT) or the International Telecommunication Union (ITU). CEPT recommendations are available at https://www.cept.org/ecc/ and ITU Recommendations at https://www.itu.int.
The final column contains the channel spacing for duplex operation in each frequency band except for bands above 60 GHz. Details of standard systems assigned in the UK are shown in the relevant technical frequency assignment criteria.

For Further Information

For More Information on Microwave Planning, Please Contact Us

OFCOM Channel Plans for 31GHz and 38GHz

OFCOM Channel Plans for 31GHz and 38GHz

Here is a chart showing channel plans for the UK

OFCOM - 31GHz 38GHz
OFCOM – 31GHz 38GHz

Uses & Applications

31GHz and 38GHz bands are used for Point to Point (P2P) Microwave Radio Links

Sources of Data and Graphics

All contents (C) OFCOM and taken from:

OfW48 UK Frequency Allocations for Fixed (Point-to-Point) Wireless Services and Scanning Telemetry This document shows the current bands managed by Ofcom that are available for fixed terrestrial (point to point) links and scanning telemetry in the UK.

Technical regulations

The Radio Equipment and Telecommunications Terminal Equipment Directive
99/5/EC (R&TTED) has been implemented in ‘The Radio Equipment and Telecommunications Terminal Equipment Regulations 2000, Statutory
Instrument (SI) 730. In accordance with Articles 4.1 and 7.2 of the R&TTED
the:
• IR2000: The UK Interface Requirement 2000 contains the requirements for the licensing and use of fixed (point-to-point) wireless services in the UK.
• IR2037: The UK Interface Requirement 2037 applies for scanning telemetry services.
• IR2078: The UK Interface Requirement 2078 applies for the 60 GHz band

Notes specific to the frequency charts

The first column describes each available frequency band, represented by a diagram (not to scale). The frequency band limits are listed below the diagram; frequencies below 10 GHz are represented in MHz, while those above 10 GHz are in GHz. The width of each guard band is shown above the diagram, and is always specified in MHz.
The channel arrangements in some bands are staggered, so that the width and position of the guard band vary for different channel spacings. In these cases, a table underneath gives details of the guard bands for different spacings (with all frequencies in MHz).
The first column also includes the title of the relevant international recommendations for each band, produced by the European Conference of Postal and Telecommunications (CEPT) or the International Telecommunication Union (ITU). CEPT recommendations are available at https://www.cept.org/ecc/ and ITU Recommendations at https://www.itu.int.
The final column contains the channel spacing for duplex operation in each frequency band except for bands above 60 GHz. Details of standard systems assigned in the UK are shown in the relevant technical frequency assignment criteria.

For Further Information

For More Information on Microwave Planning, Please Contact Us

OFCOM Channel Plans for 18GHz

OFCOM Channel Plans for 18GHz

Here is a chart showing channel plans for the UK

OFCOM - 18GHz
OFCOM – 18GHz

Uses & Applications

18GHz bands are used for Point to Point (P2P) Microwave Radio Links

Sources of Data and Graphics

All contents (C) OFCOM and taken from:

OfW48 UK Frequency Allocations for Fixed (Point-to-Point) Wireless Services and Scanning Telemetry This document shows the current bands managed by Ofcom that are available for fixed terrestrial (point to point) links and scanning telemetry in the UK.

Technical regulations

The Radio Equipment and Telecommunications Terminal Equipment Directive
99/5/EC (R&TTED) has been implemented in ‘The Radio Equipment and Telecommunications Terminal Equipment Regulations 2000, Statutory
Instrument (SI) 730. In accordance with Articles 4.1 and 7.2 of the R&TTED
the:
• IR2000: The UK Interface Requirement 2000 contains the requirements for the licensing and use of fixed (point-to-point) wireless services in the UK.
• IR2037: The UK Interface Requirement 2037 applies for scanning telemetry services.
• IR2078: The UK Interface Requirement 2078 applies for the 60 GHz band

Notes specific to the frequency charts

The first column describes each available frequency band, represented by a diagram (not to scale). The frequency band limits are listed below the diagram; frequencies below 10 GHz are represented in MHz, while those above 10 GHz are in GHz. The width of each guard band is shown above the diagram, and is always specified in MHz.
The channel arrangements in some bands are staggered, so that the width and position of the guard band vary for different channel spacings. In these cases, a table underneath gives details of the guard bands for different spacings (with all frequencies in MHz).
The first column also includes the title of the relevant international recommendations for each band, produced by the European Conference of Postal and Telecommunications (CEPT) or the International Telecommunication Union (ITU). CEPT recommendations are available at https://www.cept.org/ecc/ and ITU Recommendations at https://www.itu.int.
The final column contains the channel spacing for duplex operation in each frequency band except for bands above 60 GHz. Details of standard systems assigned in the UK are shown in the relevant technical frequency assignment criteria.

For Further Information

For More Information on Microwave Planning, Please Contact Us

FDD and TDD Explained

The difference between FDD and TDD in Microwave Transmission

Microwave ODU with Antenna using FDD (Frequency Division Duplex)
Microwave ODU with Antenna using FDD (Frequency Division Duplex)

Microwave links typically use Frequency-division duplexing (FDD) which is a method for establishing a full-duplex communications link that uses two different radio frequencies for transmitter and receiver operation. The transmit direction and receive direction frequencies are separated by a defined frequency offset.

Advantages of FDD

In the microwave realm, the primary advantages of this approach are:

  • The full data capacity is always available in each direction because the send and receive functions are separated;
  • It offers very low latency since transmit and receive functions operate simultaneously and continuously;
  • It can be used in licensed and license-exempt bands;
  • Most licensed bands worldwide are based on FDD; and
  • Due to regulatory restrictions, FDD radios used in licensed bands are coordinated and protected from interference, though not immune to it.
Microwave FDD (Frequency Division Duplexing)
Microwave FDD (Frequency Division Duplexing)

Disadvantages to FDD

The primary disadvantages of the FDD approach to microwave communication are:

  • Complex to install. Any given path requires the availability of a pair of frequencies; if either frequency in the pair is unavailable, then it may not be possible to deploy the system in that band;
  • Radios require pre-configured channel pairs, making sparing complex;
  • Any traffic allocation other than a 50:50 split between transmit and receive yields inefficient use of one of the two paired frequencies, lowering spectral efficiency; and
  • Collocation of multiple radios is difficult.

TDD compared with FDD

Time-division duplexing (TDD) is a method for emulating full-duplex communication over a half-duplex communication link. The transmitter and receiver both use the same frequency but transmit and receive traffic is switched in time. The primary advantages of this approach as it applies to microwave communication are:

  • It is more spectrum friendly, allowing the use of only a single frequency for operation and dramatically increasing spectrum utilization, especially in license-exempt or narrow-bandwidth frequency bands ;
  • It allows for the variable allocation of throughput between the transmit and receive directions, making it well suited to applications with asymmetric traffic requirements, such as video surveillance, broadcast and Internet browsing;
  • Radios can be tuned for operation anywhere in a band and can be used at either end of the link. As a consequence, only a single spare is required to serve both ends of a link.

Disadvantages of TDD

The primary disadvantages of traditional TDD approaches to microwave communications are:

  • The switch from transmit to receive incurs a delay that causes traditional TDD systems to have greater inherent latency than FDD systems;
  • Traditional TDD approaches yield poor TDM performance due to latency;
  • For symmetric traffic (50:50), TDD is less spectrally efficient than FDD, due to the switching time between transmit and receive; and
  • Multiple co-located radios may interfere with one another unless they are synchronized.

 

Rain Fade on Microwave Links

Rain Fade on Microwave Links

Microwave Link Rain FadeRain fade refers primarily to the absorption of a microwave radio frequency (RF) signal by atmospheric rain, snow or ice, and losses which are especially prevalent at frequencies above 11 GHz. It also refers to the degradation of a signal caused by the electromagnetic interference of the leading edge of a storm front. Rain fade can be caused by precipitation at the uplink or downlink location. However, it does not need to be raining at a location for it to be affected by rain fade, as the signal may pass through precipitation many miles away, especially if the satellite dish has a low look angle. From 5 to 20 percent of rain fade or satellite signal attenuation may also be caused by rain, snow or ice on the uplink or downlink antenna reflector, radome or feed horn. Rain fade is not limited to satellite uplinks or downlinks, it also can affect terrestrial point to point microwave links (those on the earth’s surface).

Possible ways to overcome the effects of rain fade are site diversity, uplink power control, variable rate encoding, receiving antennas larger (i.e. higher gain) than the required size for normal weather conditions, and hydrophobic coatings.

Two models are generally used for Rain modelling: Crane and ITU.  The ITU model is generally preferred by microwave planners.  A global map of Rain distribution according to the ITU model is shown below:

Global ITU Rain Fade Map for Microwave Link Availability Planning
Global ITU Rain Fade Map for Microwave Link Availability Planning

Used in conjunction with appropriate planning tools, this data can be used to predict the expected Operational Availability (in %) of a microwave link.  Useful Operational Availability figures typically vary from 99.9% (“three nines”) to 99.999%  (“five nines”), and are a function of the overall link budget including frequency band, antenna sizes, modulation, receiver sensitivity and other factors.

Another useful Rain Fade map is shown here, showing the 0.01% annual rainfall exceedance rate:

CableFree ITU-R Rain Fade Map - Global for 0.01% annual rainfall exceedance rate
CableFree ITU-R Rain Fade Map – Global for 0.01% annual rainfall exceedance rate

For more information on this topic, please contact us

Key technologies in a modern Microwave Network

Key technologies used in modern Microwave Networks  – what to look out for:

Build faster, more efficient microwave networks

Critical features of a modern microwave network product range let you deliver more data with superior performance while using less spectrum and equipment. These features include:

  • Complete range of low cost to high end modular solutions
  • Efficient Modulation schemes of up to 256QAM, 512QAM, 1024QAM, 2048QAM and 4096QAM
  • Automatic Transmit Power Control (ATPC)
  • Advanced packet compression techniques that increase channel capacity by up to 300%
  • Scalable multichannel microwave links that support increased capacity and reliability
  • Adaptive Coding and Modulation (ACM) that extends across multiple channels to sustain maximum performance in all environments
  • Software Defined Radio (SDR) Microwave Technology

Boost capacity and reliability with advanced networking

With a modern microwave network, you should expect advanced Carrier Ethernet networking capabilities that can double network capacity while delivering high availability. These capabilities include:

  • Unique ring and mesh topology configurations that can double network capacity, improve reliability and reduce network costs
  • Integrated IP-microwave solutions that reduce space and power consumption
  • The ability to support TDM, Ethernet and IP services on a single packet-based network
Complete Microwave Network
Complete Microwave Network

Simplify operations with an end-to-end approach

Expect to see: a complete family of microwave solutions that addresses all network sizes and locations including tail, hub and backbone. With an approach that uses common equipment and software across all sites, vendors should help you streamline management processes and reduce TCO. Features offered:

  • Common radio transceivers that reduce the need for spares across all applications
  • A flexible range of Indoor Units (IDUs) and Outdoor Units (ODUs) to reduce space and power consumption
  • Common software and network management that simplify operations across the network

Welcome to Microwave-Link.com

Welcome to Microwave-Link.com

Find out information on technology, deployment and applications for modern Digital Microwave Links

Microwave Link
CableFree MW Link installed on a telecom tower

Microwave links are widely used for connectivity in modern digital IP networks. With capacities up to 6Gbps and beyond, a modern Microwave Link network can deliver bandwidth in a reliable, cost-effective and flexible manner – without need for disruption and delay caused by digging up streets and avoiding costly leased-line or leased fibre optic alternatives.

On this website you can find more information about radio link deployment and technology.  Also we invite you to contact our experts with any questions by sending a message to us on our contact page.

CableFree Microwave Links used for Mobile Backhaul
CableFree MW Radio Links used for Mobile Backhaul

Microwave links are used extensively in 4G & 5G LTE backhaul networks, 2G (GSM) and 3G (UMTS) mobile operators, wireless metropolitan area networks (Wi-MAN) and corporate networks where high performance, flexibility, speed of deployment and low operating costs are required.  Key features of links include high spectral efficiency (256QAM, 1024QAM, 2048QAM and 4096QAM), Automatic Transmit Power Control (ATPC) and Adaptive Coding and Modulation (ACM).

Globally, MW radio links are used for around 60% of all mobile backhaul connections due to the compelling technical and commercial arguments in favour of MW radio compared to leased line and trenched fibre alternatives.  Speed of deployment and flexibility – the ability to move sites or provision rapidly – are greatly in favour of MW radio over fibre and cabled alternatives.

A Full Outdoor Microwave Link installed for ISP in Iraq with 880Mbps Full Duplex Capacity
A Full Outdoor Microwave Link installed for ISP in Iraq with 880Mbps Full Duplex Capacity

A  link typically features a radio unit and a parabolic antenna, which may vary in size from 30cm up to 4m diameter depending on required distance and capacity.  The radio unit is generally either a “Full Outdoor”, “Split Mount” or “Full Indoor” design depending on operator preference, deployment, features and available indoor space for specific sites and installation.

CableFree FOR3 Full Outdoor 1024QAM Microwave Link
Full Outdoor 1024QAM MW Radio Link

For More information on MW Radio Links please Contact Us